北京哪家医院治白癜风 https://jbk.39.net/yiyuanfengcai/zn_bjzkbdfyy/本文来自蓝炎资本,但不是研报,本文写的更“深入”一些。
本文要更贴近传感器技术的发展路线和优缺点,文中列出传感器技术未来的4大发展趋势:微型化、柔性化、无源无线、传感融合,并试图从技术本身的优劣势和存在的问题,而不是市场的力量,探索这些趋势的前景。最后,给出了什么场景拥有更大的传感器发展空间?
从传感器技术的可能性去探索未来传感器的发展趋势,小编认为这样比较符合科技产业的发展规律。推荐!
传感器的4大发展方向
自年起,MEMS智能传感器开始进入人们的视野,大家对于传感器形态上的变化有了颠覆性的认知。传感器的尺寸及性能伴随微机电技术的发展有了质的飞跃。
随后在汽车及消费电子市场上大放异彩,形成了众所周知的传感器第一及第二次发展浪潮。如今,第三次浪潮万物联网已经到来,它与传感器之间的关系无需再多赘述,而汽车行业及消费电子领域对于传感器发展的推动作用犹在。
因此,细心观察这些行业中产品的发展轨迹,我们能够看到:传感器的发展遵循四个方向。
1.微型化
微型化是未来传感器发展的必然趋势之一。传感器本质属于半导体,遵循摩尔定律,在这之上,伴随超越摩尔的多样化发展路线。从生产及加工的角度上看,传感器尺寸决定了原材料的使用率,传感器微型化代表了生产成本的下降;从性能上看,微型传感器的能耗得到大幅降低;从产品角度看,传感器的缩小可以释放更多空间,间接提升产品最终的用户体验。
根据YoleDéveloppement的研究,MEMS典型器件中,加速度计的封装管脚从年的3×5mm2缩小至年的1.6×1.6mm2,面积仅相当于之前的17%,而成本则是过去的十分之一。
博世BMA系列加速度计尺寸从3x3mm缩小为2x2mm
2.柔性化
传感器柔性化的目的主要有三种:便携、仿生、融合。便携性主要基于柔性电子方向的发展。目的是改变电子器件刚性结构,使得产品设计上能够有所突破,在外形上可以折叠卷曲,更加便于携带、使用。
仿生方向是通过柔性传感器来模拟人体皮肤,为机器人的感知进行赋能。生物融合则是针对人体来开展的传感器研究。柔性材料可以更加贴合人体器官,在不被人体察觉的状态下,对身体生物变量进行监测。
目前大家能够接触到的传感器柔性化例子除了各种“智能鞋垫、枕头、床垫”之外,就数折叠屏手机最具代表性了。未来手机可能会越来越“软”,像纸一样折起来放在口袋,或者像隐形眼镜一样,戴在眼中。
3.无源无线化
电源及电线的存在对于传感器的应用环境限制很大。许多工业及医疗场景中复杂的机械及人体结构无法满足传感器电源及线路的排布。主流思想主要是解决无源这个问题。
毕竟无源问题解决了,无线通讯只需要搭载WiFi或者蓝牙模块就行了(前提是电量能支持)。另外利用生物电、摩擦电等方式收集能量供于传感器的发展线路也已存在,只是均停留在实验室阶段。
RFID无源无线传感器基础原理
4.传感融合化
传感器融合在产业中的主要表现为:按照数据采集方式及传感器技术结构,将同类别的传感器进行硬件集成,并通过特定算法进行数据校正及优化,降低串扰。不同传感器之间协同工作,性能互补,为用户提供更丰富功能,赋予消费电子行业更大商业价值。
图片来源:YoleDéveloppement,民生证券研究院
可穿戴设备是消费电子市场中迭代非常明显的一类产品。从外观到功能的进化就可以清晰的看到传感器融合的轨迹。不同种类的传感器逐步增加、融合、协同工作使得电子设备的功能更丰富,更符合消费者需求。
另一个明显案例就是汽车电子中的视觉雷达融合。目前,大多数路面上行驶车辆内的ADAS功能都是独立工作的,这意味着相应传感器彼此之间几乎不交换信息。
然而,面对复杂环境仅仅依靠单一传感器是不够的。我们需要将不同种类的传感信息融合在一起,来弥补各传感器自身的缺点及不足。雷达视觉融合就是个传感融合的典型例子。
可见光谱范围内工作的摄像头在浓雾、下雨、强光或弱光情况下会失真。而雷达缺少成像传感器所具有的高分辨率。两者的结合则可在复杂环境下输出更可靠的数据。
传感器专家网(sensorexpert.
1、分布式:将各独立传感器获取的原始数据进行局部处理,然后将处理结果发送到数据融合中心进行智能优化组合,得到最终结果。优点是:对通信带宽的分布式需求低,计算速度快,可靠性和连续性好。缺点是:跟踪精度不够。
2、集中式:将采集到的原始数据直接传输到中央处理器进行融合处理,可以实现实时集成。优点:数据处理精度高,算法灵活,缺点:对处理器要求高,可靠性低,数据量大,难以实现。
3、混合式:混合多传感器信息融合框架(分布式+集中式),部分传感器采用集中式融合,其余传感器采用分布式融合。优点:混合融合框架具有较强的适应性,兼顾了集中式融合和分布式融合的优点,稳定性强。缺点:混合融合结构比前两种融合方案更为复杂,增加了通信和计算成本。
传感融合的过程中,整个系统需要处理多参量的数据,甚至相互矛盾的信息。如何保证融合系统快速处理数据,过滤噪点和干扰,确保融合后的信息不会失真,误报或堵塞中央处理器导致死机,是该行业发展的重要难点。
讲到这里,或许你会一头雾水,到底什么是目标数据融合,什么是原始数据融合?为什么原始数据融合就厉害了?我还是用自动驾驶来举个例子说明一下:
自动驾驶需要用到多种传感器,比如摄像头、毫米波雷达、激光雷达以及超声波雷达。不同传感器的工作原理不同所以它们产生的数据类型也不一样。
如果车辆在自动驾驶过程中发现前面飘来一个塑料袋,摄像头可能会识别出它是个塑料袋或者白色的皮球,甚至是白色的飞鸟(如果光线不好),而毫米波雷达很可能会认为它是个石头或者相同尺寸的障碍物。
这时候不同传感器发出了截然相反的指令,摄像头建议减速而雷达建议紧急制动。两个互相冲突的指令必须引入第三个传感器介入打破平衡,或根据系统预设优先级直接判定紧急制动。
但无论哪一种方案,都不是自动驾驶最优的解决方案。因为复杂的逻辑判定流程会造成延迟以及算力的浪费,甚至不必要的执行动作,而这还仅仅是一个塑料袋。如果两个塑料袋飘过来,就是两倍的工作量。
这就是目标数据融合的尴尬。
而原始数据融合则是所有传感器直接描绘完整环境,事实运算并对每个像素进行动态信息标注。根据塑料袋的动态方式计算出它的重量,直接得到它是塑料袋这个答案,并配合做出相应驾驶动作。原始数据融合能够在使用更少能源(和计算)的情况下,以更高的分辨率探测环境。当来自不同传感器的所有原始数据在处理之前被混合在一起时,深度神经网络(DNN)可以创建一个更完整的环境图像。
这里说一下行业中比较有代表性的公司方便大家理解传感融合公司的产品模式和服务对象。以色列的初创公司VAYAVISION就是一家提供自动驾驶车辆原始数据融合和感知软件解决方案的供应商,年10月这家公司拿到了万美元的融资(投资方包括三菱HFJ金融、LG电子等),该公司年5月于EcoMotion智能交通峰会上展示了其最新的自动驾驶环境感知软件VAYADrive2.0。
(上图是Vayavision